15 research outputs found

    Activation of p53 by Nutlin-3a Induces Apoptosis and Cellular Senescence in Human Glioblastoma Multiforme

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients

    Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients

    Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE 2 in colorectal cancer

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells. [Results]: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study. Gene expression was analyzed by real-time PCR and Affymetrix U219 arrays. DNA methylation was analyzed by bisulfite sequencing, dissociation curves, and HumanMethylation450K arrays. Most CRC patients show selective transcriptional deregulation of the enzymes involved in the synthesis of prostanoids and their receptors in both tumor and its adjacent mucosa. DNA methylation alterations exclusively affect the tumor tissue (both adenomas and carcinomas), redirecting the transcriptional deregulation to activation of prostaglandin E 2 (PGE 2 ) function and blockade of other biologically active prostaglandins. In particular, PTGIS, PTGER3, PTGFR, and AKR1B1 were hypermethylated in more than 40 % of all analyzed tumors. [Conclusions]: The transcriptional and epigenetic profiling of the PTGS pathway provides important clues on the biology of the tumor and its microenvironment. This analysis renders candidate markers with potential clinical applicability in risk assessment and early diagnosis and for the design of new therapeutic strategies.IC was funded by Fundação para a CiĂȘncia e a Tecnologia (SFRH/BD/28464/2006); JC was funded by a FPI fellowship. ADV was supported in part by a contract from the Ministerio de EconomĂ­a y Competitividad (MINECO) (PTC2011-1091). This work was supported by the MINECO(SAF2011/23638, SAF2014/52492), the Catalan Institute of Oncology and the Instituto de Salud Carlos III (grant PI11-01439, RD12/0042/0019 and CIBERESP CB06/02/2005), the Generalitat de Catalunya (grant 2014SGR647), and the AsociaciĂłn Española Contra el CĂĄncer (AECC).Peer Reviewe

    Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer.

    Get PDF
    BACKGROUND: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells. RESULTS: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study. Gene expression was analyzed by real-time PCR and Affymetrix U219 arrays. DNA methylation was analyzed by bisulfite sequencing, dissociation curves, and HumanMethylation450K arrays. Most CRC patients show selective transcriptional deregulation of the enzymes involved in the synthesis of prostanoids and their receptors in both tumor and its adjacent mucosa. DNA methylation alterations exclusively affect the tumor tissue (both adenomas and carcinomas), redirecting the transcriptional deregulation to activation of prostaglandin E2 (PGE2) function and blockade of other biologically active prostaglandins. In particular, PTGIS, PTGER3, PTGFR, and AKR1B1 were hypermethylated in more than 40 % of all analyzed tumors. CONCLUSIONS: The transcriptional and epigenetic profiling of the PTGS pathway provides important clues on the biology of the tumor and its microenvironment. This analysis renders candidate markers with potential clinical applicability in risk assessment and early diagnosis and for the design of new therapeutic strategies

    Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Background: The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. Design and Methods: Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation-dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients' cells with deleted/mutated TP53. Results: Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1 alpha, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. Conclusions: These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia

    The potential anticancer agent PK11195 induces apoptosis irrespective of p53 and ATM status in chronic lymphocytic leukemia cells

    Get PDF
    Background and Objectives The potential anticancer agent 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a translocator protein (18KDa) (TSPO) ligand, facilitates the induction of cell death by a variety of cytotoxic and chemotherapeutic agents. Primary chronic lymphocytic leukemia (CLL) cells overexpress TSPO. The aim of this study was to examine the effects of PK11195 on CLL cells. Design and Methods Using cytometric analysis, we studied the cytotoxic effects of PK11195 on peripheral B and T lymphocytes from patients with CLL and from healthy donors. Western blot and cytometric analyses were used to study the mitochondrial effects of PK11195 on CLL cells. Moreover, we analyzed the cytotoxic effect of PK11195 in patients' cells with mutated p53 or ATM. Results PK11195 induces apoptosis and had additive effects with chemotherapeutic drugs in primary CLL cells. Other TSPO ligands such as RO 5-4864 and FGIN-1-27 also induce apoptosis in CLL cells. PK11195 induces mitochondrial depolarization and cytochrome c release upstream of caspase activation, and dithiocyana-tostilbene-2,2-disulfonic acid (DIDS), a voltage-dependent anion channel (VDAC) inhibitor, inhibits PK11195-induced apoptosis, demonstrating a direct involvement of mitochondria. CLL cells and normal B cells are more sensitive than T cells to PK11195-induced apoptosis. Interestingly, PK11195 induced apoptosis in CLL cells irrespective of their p53 or ATM status. Interpretation and Conclusions These results suggest that PK11195 alone or in combination with chemotherapeutic drugs might be a new therapeutic option for the treatment of CLL

    Identification of (1H)-pyrroles as histone deacetylase inhibitors with antitumoral activity

    No full text
    Histone deacetylases (HDACs) play a key role in the regulation of gene expression and chromatin structure, and drugs targeting these enzymes might have an important impact in the treatment of human cancer. Herein, we report the characterization of (1H)-pyrroles as a new subfamily of HDAC inhibitors obtained by computational modeling of class-I human HDACs. From a functional standpoint, (1H)-pyrroles are powerful inductors of acetylation of histones H3 and H4, and restore the expression of growth-inhibitory genes. From a cellular view, these compounds cause a marked decrease in the viability of cancer cells in vitro and in vivo, associated with a cell-cycle arrest at G2/M and an inhibition of angiogenesis. Thus, (1H)-pyrroles emerge as a novel group of HDAC inhibitors with promising antitumoral features. © 2009 Macmillan Publishers Limited All rights reserved.This work was supported by Grants SAF2007-00027-65134, Consolider CSD2006-49, the Spanish Association Against Cancer (AECC), FP6 Grant SMARTER, Ikerchem Ltd., The Universidad del PaĂ­s Vasco-Euskal Herriko Unibertsitatea (Grant UE07/16), the Gobierno Vasco-Eusko Jaurlaritza (Grant 9/UPV00170.215-13548) and the Spanish Ministerio de EducaciĂłn y Ciencia (CTQ2007-67528/BQU). SR is a ‘RamĂłn y Cajal’ Researcher. ME is an ICREA Research Professor.Peer Reviewe

    Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme

    No full text
    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients

    Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer

    No full text
    Background: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells. Results: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study. Gene expression was analyzed by real-time PCR and Affymetrix U219 arrays. DNA methylation was analyzed by bisulfite sequencing, dissociation curves, and HumanMethylation450K arrays. Most CRC patients show selective transcriptional deregulation of the enzymes involved in the synthesis of prostanoids and their receptors in both tumor and its adjacent mucosa. DNA methylation alterations exclusively affect the tumor tissue (both adenomas and carcinomas), redirecting the transcriptional deregulation to activation of prostaglandin E2 (PGE2) function and blockade of other biologically active prostaglandins. In particular, PTGIS, PTGER3, PTGFR, and AKR1B1 were hypermethylated in more than 40 % of all analyzed tumors. Conclusions: The transcriptional and epigenetic profiling of the PTGS pathway provides important clues on the biology of the tumor and its microenvironment. This analysis renders candidate markers with potential clinical applicability in risk assessment and early diagnosis and for the design of new therapeutic strategies

    Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer.

    No full text
    BACKGROUND: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells. RESULTS: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study. Gene expression was analyzed by real-time PCR and Affymetrix U219 arrays. DNA methylation was analyzed by bisulfite sequencing, dissociation curves, and HumanMethylation450K arrays. Most CRC patients show selective transcriptional deregulation of the enzymes involved in the synthesis of prostanoids and their receptors in both tumor and its adjacent mucosa. DNA methylation alterations exclusively affect the tumor tissue (both adenomas and carcinomas), redirecting the transcriptional deregulation to activation of prostaglandin E2 (PGE2) function and blockade of other biologically active prostaglandins. In particular, PTGIS, PTGER3, PTGFR, and AKR1B1 were hypermethylated in more than 40 % of all analyzed tumors. CONCLUSIONS: The transcriptional and epigenetic profiling of the PTGS pathway provides important clues on the biology of the tumor and its microenvironment. This analysis renders candidate markers with potential clinical applicability in risk assessment and early diagnosis and for the design of new therapeutic strategies
    corecore